Multi-level interactions for RGB-D object detection

نویسندگان

چکیده

Abstract In order to efficiently utilize high-level information and depth in RGB-D saliency object detection, multi-level fusion is studied. Different from existing methods which ignore feature dilution the process of downward transmission, a interactive method designed compared with five advanced models through four evaluation indexes. The experimental results show that model this paper advanced.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Graph Matching for Object Detection from Rgb-d Images

We propose an optimization method for estimating parameters in graph-theoretical formulations of the matching problem for object detection. Unlike several methods which optimize parameters for graph matching in a way to promote correct correspondences and to restrict wrong ones, our approach aims at improving performance in the more general task of object detection. In our formulation, similari...

متن کامل

Frustum PointNets for 3D Object Detection from RGB-D Data

While object recognition on 2D images is getting more and more mature, 3D understanding is eagerly in demand yet largely underexplored. In this paper, we study the 3D object detection problem from RGB-D data captured by depth sensors in both indoor and outdoor environments. Different from previous deep learning methods that work on 2D RGB-D images or 3D voxels, which often obscure natural 3D pa...

متن کامل

Semantic Parsing for Priming Object Detection in RGB-D Scenes

The advancements in robot autonomy and capabilities for carrying out more complex tasks in unstructured indoors environments can be greatly enhanced by endowing existing environment models with semantic information. In this paper we describe an approach for semantic parsing of indoors environments into semantic categories of Ground, Structure, Furniture and Props. Instead of striving to categor...

متن کامل

Multi-Scale, Categorical Object Detection and Pose Estimation using Hough Forest in RGB-D Images

Autonomous Intelligent Systems Institute for Computer Science Master of Science Multi-Scale, Categorical Object Detection and Pose Estimation using Hough Forest in RGB-D Images by Ishrat Badami Classification and localization of objects enables a robot to plan and execute tasks in unstructured environments. Much work on the detection and pose estimation of objects in the robotics context focuse...

متن کامل

Correlated and Individual Multi-Modal Deep Learning for RGB-D Object Recognition

In this paper, we propose a correlated and individual multi-modal deep learning (CIMDL) method for RGB-D object recognition. Unlike most conventional RGB-D object recognition methods which extract features from the RGB and depth channels individually, our CIMDL jointly learns feature representations from raw RGB-D data with a pair of deep neural networks, so that the sharable and modalspecific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of physics

سال: 2022

ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']

DOI: https://doi.org/10.1088/1742-6596/2181/1/012003